YOU ARE TO COPY THE NOTES, DRAW EACH FIGURE AND DO THE ACTIVITIES.

Parts of a circle

Figure 1.

Figure 2.
The perimeter of a circle is called the circumference. Perimeter: - the sum of the distances around a closed shape.

Activity 1

Your Turn: Draw five circles and for each circle make up measurements for the diameters of the circles and thus state the radius measurement for each circle.

Here is an example:

NB: \mathbf{d} is the short form for diameter and \mathbf{r} is for radius
$\mathrm{d}=80 \mathrm{~mm} \mathbf{r}=40 \mathrm{~mm}$ (half of the diameter)

Circumference of circle

The perimeter of a circle is called the circumference. Perimeter:- the sum of the distances around a closed shape.

To find the circumference of a circle, you use the formula: $\mathbf{C = 2 \times \pi \times \mathbf { r }}$ or $\boldsymbol{\pi} \times \mathbf{d}$
NB: C means circumference and $\boldsymbol{\pi}$ has a value of $\frac{\mathbf{2 2}}{\mathbf{7}}$ or 3.142
Example: Find the circumference of the circle below.

$C=2 \times \pi \times r \quad$ (you can put the 2 over 1) or $C=\pi \times d$
$C=\frac{2}{1} \times \frac{22}{7} \times 40 \mathrm{~mm}$
$C=\frac{22}{7} \times 80 \mathrm{~mm}$
$C=\frac{44 \times 40}{7}=\frac{1760}{7}$
$\mathrm{C}=\frac{22 \times 80}{7}=\frac{1760}{7}$
$\mathbf{C}=\mathbf{2 5 1 . 4 2 9}$ (rounded to 3 dp)
$\mathbf{C}=\mathbf{2 5 1 . 4 2 9}$ (rounded to 3 dp)

YOUR TURN: Activity 2: pg 37 Ex $4 b$ \# 1, 2 \& 3

Area

Area is a measure of how much space there is on a flat surface. It's basically the size of a surface.

The area of a circle is calculated by using the formula: $\mathrm{A}=\pi \times \mathrm{r}^{2}$

Example

$$
A=\pi \times r 2
$$

$$
\begin{aligned}
& A=\pi \times r \times r \\
& A=\frac{22}{7} \times 7 \times 7
\end{aligned}
$$

$A=154 \mathrm{~cm}^{\mathbf{2}}$ (your answer must be expressed in units squared)

YOUR TURN: Activity 3 NB: The answers are in red. You are to show the workings as to how these areas are obtained

Find the area of each circle. Use 3.14 for pi.
a.

b.

c.

$452.16 \mathrm{~cm}^{2}$

153.86 in. ${ }^{2}$
e.

254.34 mm 2
f.

YOUR TURN: Activity 4

Find the area of each circle. Use 3.14 for pi. Show your work.
a.

b.

Area of Parallelogram

A Parallelogram is a flat shape with opposite sides parallel and equal in length.

Area of a Parallelogram

Example

$$
\begin{aligned}
& A=b \times h \\
& A=20 \mathrm{~cm} \times 3 \mathrm{~cm} \\
& A=60 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of Triangle

To calculate the area of a triangle the formula below is used:
Area $=\frac{1}{2} \times b \times h$ or $\frac{b \times h}{2}$

Example

mm
(Note: 12 is the height, not the length of the left-hand side)

$$
\begin{gathered}
\text { Height }=\mathrm{h}=12 \mathrm{~mm} \\
\text { Base }=\mathrm{b}=20 \mathrm{~mm} \\
\text { Area }=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}=1 / 2 \times 20 \times 12=\mathbf{1 2 0}
\end{gathered}
$$

YOUR TURN: Activity 5 pg 40 Ex 4c \# 1-16 ALL WORKINGS MUST BE SEEN
Activity 6: Find the area of the triangles given below. All workings must be shown.
1)

Area $=$ \qquad cm^{2}
3)

Area = \qquad
5)

Area = \qquad
2)

Area $=$ \qquad
4)

Area $=$ \qquad
6)

Area = \qquad

