EQUATION OF TANGENT TO A CIRCLE

A tangent is perpendicular to a radius at the point of tangency. The radius is also called a NORMAL to the tangent.

If the gradient of the radius (NORMAL) is m then the gradient of the tangent $=-\frac{1}{m}$
Example:

1. Find the equation of the tangent to the circle $(x-1)^{2}+(y-4)^{2}=5$ at the point $(2,6)$.

$$
\begin{gathered}
(x-1)^{2}+(y-4)^{2}=5 \\
(x-a)^{2}+(y-b)^{2}=r^{2}
\end{gathered}
$$

Comparing $\mathrm{a}=1, \mathrm{~b}=4$
therefore, Centre of circle is $(1,4)$

Gradient of radius

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{2-1}=\frac{2}{1}=2
$$

Therefore, Gradient of Tangent $=-\frac{1}{m}=-\frac{1}{2}$

Let equation of tangent be $y=m x+c$ then $y=-\frac{1}{2} x+c$
at the point $(2,6) \ldots . x=2, y=6$
therefore,

$$
\begin{gathered}
y=-\frac{1}{2} x+c \\
6=-\frac{1}{2}(2)+c \\
6=-1+c \\
6+1=c \\
7=c
\end{gathered}
$$

Hence, equation of tangent is

$$
\begin{aligned}
& y=-\frac{1}{2} x+c \\
& y=-\frac{1}{2} x+7
\end{aligned}
$$

2. Find the equation of the normal (RADIUS) that passes through the point $(2,6)$.

Gradient of radius (NORMAL) is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{2-1}=\frac{2}{1}=2
$$

Let equation of NORMAL be

$$
y=m x+c, \text { therefore } y=2 x+c
$$

at the point $(2,6) \ldots . . x=2, y=6$
Using

$$
\begin{gathered}
y=2 x+c \\
6=2(2)+c \\
6=4+c \\
6-4=c \\
2=c
\end{gathered}
$$

Equation of the normal (RADIUS) is $y=2 x+2$
ADDITIONAL MATHS TEXT BOOK
EX 7.7 PAGE 245
\# 1B, 2A, 3A

